OFFSET
0,2
FORMULA
G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^4.
G.f.: (1/(1-x)) * c(x/(1-x)^5), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +2*(-5*n+3)*a(n-1) +(19*n-47)*a(n-2) +20*(-n+4)*a(n-3) +5*(3*n-17)*a(n-4) +2*(-3*n+22)*a(n-5) +(n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360103 := proc(n)
add(binomial(n+4*k, n-k)*A000108(k), k=0..n) ;
end proc:
seq(A360103(n), n=0..40) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(2*k, k)/(k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^5))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2023
STATUS
approved