login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n+4*k,n-k) * Catalan(k).
4

%I #13 Mar 12 2023 09:23:08

%S 1,2,9,49,283,1715,10793,69906,463031,3122264,21363065,147951489,

%T 1035173405,7306326465,51959150713,371950057003,2678083379707,

%U 19381867703946,140915907625531,1028760981192771,7538511404971231,55427326349613665,408789584900354397

%N a(n) = Sum_{k=0..n} binomial(n+4*k,n-k) * Catalan(k).

%F G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^4.

%F G.f.: (1/(1-x)) * c(x/(1-x)^5), where c(x) is the g.f. of A000108.

%F D-finite with recurrence (n+1)*a(n) +2*(-5*n+3)*a(n-1) +(19*n-47)*a(n-2) +20*(-n+4)*a(n-3) +5*(3*n-17)*a(n-4) +2*(-3*n+22)*a(n-5) +(n-9)*a(n-6)=0. - _R. J. Mathar_, Mar 12 2023

%p A360103 := proc(n)

%p add(binomial(n+4*k,n-k)*A000108(k),k=0..n) ;

%p end proc:

%p seq(A360103(n),n=0..40) ; # _R. J. Mathar_, Mar 12 2023

%o (PARI) a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(2*k, k)/(k+1));

%o (PARI) my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^5))))

%Y Partial sums of A360101.

%Y Cf. A000108, A360057.

%Y Cf. A006318, A007317, A162476, A360102.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jan 25 2023