login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360101
a(n) = Sum_{k=0..n} binomial(n+4*k-1,n-k) * Catalan(k).
3
1, 1, 7, 40, 234, 1432, 9078, 59113, 393125, 2659233, 18240801, 126588424, 887221916, 6271153060, 44652824248, 319990906290, 2306133322704, 16703784324239, 121534039921585, 887845073567240, 6509750423778460, 47888814944642434, 353362258550740732
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 / (1-x)^5.
G.f.: c(x/(1-x)^5), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +(-10*n+7)*a(n-1) +(19*n-56)*a(n-2) +10*(-2*n+9)*a(n-3) +5*(3*n-19)*a(n-4) +(-6*n+49)*a(n-5) +(n-10)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360101 := proc(n)
add(binomial(n+4*k-1, n-k)*A000108(k), k=0..n) ;
end proc:
seq(A360101(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
m = 23;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^2/(1 - x)^5 + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+4*k-1, n-k)*binomial(2*k, k)/(k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^5)))
CROSSREFS
Partial sums are A360103.
Sequence in context: A026782 A099459 A243875 * A371813 A051814 A154968
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2023
STATUS
approved