login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099459
Expansion of 1/(1 - 7*x + 9*x^2).
5
1, 7, 40, 217, 1159, 6160, 32689, 173383, 919480, 4875913, 25856071, 137109280, 727060321, 3855438727, 20444528200, 108412748857, 574888488199, 3048504677680, 16165536349969, 85722212350663, 454565659304920
OFFSET
0,2
COMMENTS
Associated to the knot 9_48 by the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)*A(x/(1+x^2)). See A099460 and A099461.
LINKS
Dror Bar-Natan, 9 48, The Knot Atlas.
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-9)^k*7^(n-2*k).
a(n) = Sum{k=0..n} binomial(2*n-k+1, k) * 3^k. - Paul Barry, Jan 17 2005
a(n) = 7*a(n-1) - 9*a(n-2), n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = ((7 + sqrt(13))^(n+1) - (7 - sqrt(13))^(n+1))/(2^(n+1)*sqrt(13)). - Rolf Pleisch, May 19 2011
a(n) = 3^(n-1)*ChebyshevU(n-1, 7/6). - G. C. Greubel, Nov 18 2021
MATHEMATICA
LinearRecurrence[{7, -9}, {1, 7}, 30] (* Harvey P. Dale, Jan 06 2012 *)
PROG
(Sage) [lucas_number1(n, 7, 9) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
(Magma) [n le 2 select 7^(n-1) else 7*Self(n-1) -9*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 18 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved