login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099462
Expansion of x/(1 - 4*x^2 - 4*x^3).
2
0, 1, 0, 4, 4, 16, 32, 80, 192, 448, 1088, 2560, 6144, 14592, 34816, 82944, 197632, 471040, 1122304, 2674688, 6373376, 15187968, 36192256, 86245376, 205520896, 489750528, 1167065088, 2781085696, 6627262464, 15792603136, 37633392640
OFFSET
0,4
COMMENTS
Binomial transform is A099463.
FORMULA
a(n) = 4*a(n-2) + 4*a(n-3).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(k, n-2*k-1)*4^k.
a(n+1) = Sum_{k=0..floor(n/2)} C((n-k)/2, k)*(1+(-1)^(n-k))*2^(n-k). - Paul Barry, Sep 09 2005
MATHEMATICA
LinearRecurrence[{0, 4, 4}, {0, 1, 0}, 40] (* G. C. Greubel, Nov 18 2021 *)
PROG
(Magma) [n le 3 select (1+(-1)^n)/2 else 4*(Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Nov 18 2021
(Sage)
def a(n): return sum( 4^k*binomial(k, n-2*k-1) for k in (0..(n-1)//2) )
[a(n) for n in (0..40)] # G. C. Greubel, Nov 18 2021
CROSSREFS
Cf. A099463.
Sequence in context: A322039 A158101 A038234 * A218051 A092266 A257606
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved