|
|
A038234
|
|
Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*4^j.
|
|
1
|
|
|
1, 4, 4, 16, 32, 16, 64, 192, 192, 64, 256, 1024, 1536, 1024, 256, 1024, 5120, 10240, 10240, 5120, 1024, 4096, 24576, 61440, 81920, 61440, 24576, 4096, 16384, 114688, 344064, 573440, 573440, 344064, 114688, 16384, 65536, 524288
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also the absolute values of the coefficients of the Belyi Polynomial P_(i,i)(x). - R. J. Mathar, Oct 16 2008
|
|
LINKS
|
Table of n, a(n) for n=0..37.
I. Bauer, F. Catanese, F. Grunewald, Chebycheff and Belyi Polynomials, Dessins de'Enfants, Beauville Surfaces and Group Theory, Med. J. Math. vol 3 no 2 (2006) 121-146. [From R. J. Mathar, Oct 16 2008]
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
|
|
FORMULA
|
G.f.: 1/(1 - 4*x - 4*x*y). - Ilya Gutkovskiy, Apr 21 2017
|
|
EXAMPLE
|
1 ;
4 4 ;
16 32 16 ;
64 192 192 64 ;
256 1024 1536 1024 256 ;
1024 5120 10240 10240 5120 1024 ;
4096 24576 61440 81920 61440 24576 4096 ;
16384 114688 344064 573440 573440 344064 114688 16384 ;
65536 524288 1835008 3670016 4587520 3670016 1835008 524288 65536 ;
262144 2359296 9437184 22020096 33030144 33030144 22020096 9437184 2359296 262144 ;
|
|
CROSSREFS
|
Sequence in context: A183433 A322039 A158101 * A099462 A218051 A092266
Adjacent sequences: A038231 A038232 A038233 * A038235 A038236 A038237
|
|
KEYWORD
|
nonn,tabl,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|