login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257606
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4.
6
1, 4, 4, 16, 40, 16, 64, 296, 296, 64, 256, 1928, 3552, 1928, 256, 1024, 11688, 34808, 34808, 11688, 1024, 4096, 67656, 302352, 487312, 302352, 67656, 4096, 16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384, 65536, 2076424, 18330496, 62617144, 93280000, 62617144, 18330496, 2076424, 65536
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 4.
Sum_{k=0..n} T(n, k) = A049388(n).
T(n,0) = T(n,n) = 4^n. - Georg Fischer, Oct 02 2021
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 1, and b = 4.
T(n, n-k) = T(n, k).
T(n, 1) = 8*5^n - 4^n*(8+n).
T(n, 2) = 2*((56 +15*n +n^2)*4^(n-1) - 4*(8+n)*5^n + 3*6^(n+1)). (End)
EXAMPLE
Triangle begins as:
1;
4, 4;
16, 40, 16;
64, 296, 296, 64;
256, 1928, 3552, 1928, 256;
1024, 11688, 34808, 34808, 11688, 1024;
4096, 67656, 302352, 487312, 302352, 67656, 4096;
16384, 379240, 2423016, 5830000, 5830000, 2423016, 379240, 16384;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 1, 4], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257606
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 1, 4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A008292, A049388 (row sums), A256890, A257180, A257607.
Similar sequences listed in A256890.
Sequence in context: A099462 A218051 A092266 * A219398 A222104 A257613
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 03 2015
EXTENSIONS
a(3) corrected by Georg Fischer, Oct 02 2021
STATUS
approved