login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257608
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 1.
5
1, 1, 1, 1, 20, 1, 1, 219, 219, 1, 1, 2218, 8322, 2218, 1, 1, 22217, 220222, 220222, 22217, 1, 1, 222216, 5006247, 12332432, 5006247, 222216, 1, 1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1, 1, 22222214, 2123693776, 19700767514, 39259903390, 19700767514, 2123693776, 22222214, 1
OFFSET
0,5
LINKS
G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_9(n,k).
FORMULA
T(n, k) = t(n-k, k), where t(n,k) = f(k)*t(n-1, k) + f(n)*t(n, k-1), and f(n) = 9*n + 1.
Sum_{k=0..n} T(n, k) = A084949(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = T(n, n) = 1, a = 9, and b = 1. - G. C. Greubel, Mar 20 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 219, 219, 1;
1, 2218, 8322, 2218, 1;
1, 22217, 220222, 220222, 22217, 1;
1, 222216, 5006247, 12332432, 5006247, 222216, 1;
1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 9, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257608
if (k<0 or k>n): return 0
elif (k==0 or k==n): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 9, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
CROSSREFS
Cf. A084949 (row sums), A257619.
Similar sequences listed in A256890.
Sequence in context: A155516 A174674 A144443 * A022183 A015146 A064033
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 03 2015
STATUS
approved