login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257611
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3.
11
1, 3, 3, 9, 30, 9, 27, 213, 213, 27, 81, 1308, 2982, 1308, 81, 243, 7431, 32646, 32646, 7431, 243, 729, 40314, 310263, 587628, 310263, 40314, 729, 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187, 6561, 1099704, 22059036, 113360904, 191433990, 113360904, 22059036, 1099704, 6561
OFFSET
0,2
FORMULA
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 2*n + 3.
Sum_{k=0..n} T(n, k) = A051578(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
EXAMPLE
Array t(n,k) begins as:
1, 3, 9, 27, 81, 243, ...;
3, 30, 213, 1308, 7431, 40314, ...;
9, 213, 2982, 32646, 310263, 2695923, ...;
27, 1308, 32646, 587628, 8701545, 113360904, ...;
81, 7431, 310263, 8701545, 191433990, 3579465642, ...;
243, 40314, 2695923, 113360904, 3579465642, 93066106692, ...;
729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 30, 9;
27, 213, 213, 27;
81, 1308, 2982, 1308, 81;
243, 7431, 32646, 32646, 7431, 243;
729, 40314, 310263, 587628, 310263, 40314, 729;
2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187;
MATHEMATICA
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1, k, p, q] + (p*n+q)*t[n, k-1, p, q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n, k, 2, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
PROG
(PARI) f(x) = 2*x + 3;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1, m) + f(n)*t(n, m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "); ); print(); ); \\ Michel Marcus, May 06 2015
(Sage)
@CachedFunction
def t(n, k, p, q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1, k, p, q) + (p*n+q)*t(n, k-1, p, q)
def A257611(n, k): return t(n-k, k, 2, 3)
flatten([[A257611(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
CROSSREFS
Similar sequences listed in A256890.
Sequence in context: A010098 A029857 A327712 * A268617 A264412 A202889
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 06 2015
STATUS
approved