login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257627
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(x) = 7*x + 3.
9
1, 3, 3, 9, 60, 9, 27, 753, 753, 27, 81, 8178, 25602, 8178, 81, 243, 84291, 631506, 631506, 84291, 243, 729, 852144, 13348623, 30312288, 13348623, 852144, 729, 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187
OFFSET
0,2
FORMULA
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 3.
Sum_{k=0..n} T(n, k) = A049209(n).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
EXAMPLE
Array t(n, k) begins as:
1, 3, 9, 27, 81, ... A000244;
3, 60, 753, 8178, 84291, ...;
9, 753, 25602, 631506, 13348623, ...;
27, 8178, 631506, 30312288, 1141302225, ...;
81, 84291, 13348623, 1141302225, 70760737950, ...;
243, 852144, 259308063, 37244959794, 3608891348622, ...;
729, 8554245, 4793178096, 1109572049376, 161806374029202, ...;
Triangle, T(n, k) begins as:
1;
3, 3;
9, 60, 9;
27, 753, 753, 27;
81, 8178, 25602, 8178, 81;
243, 84291, 631506, 631506, 84291, 243;
729, 852144, 13348623, 30312288, 13348623, 852144, 729;
2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187;
MATHEMATICA
f[n_]:= 7*n+3;
t[n_, k_]:= t[n, k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1, k] +f[n]*t[n, k-1]]];
T[n_, k_]= t[n-k, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
PROG
(Sage)
def f(n): return 7*n+3
@CachedFunction
def t(n, k):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
def A257627(n, k): return t(n-k, k)
flatten([[A257627(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
CROSSREFS
Cf. A000244, A038221, A049209 (row sums), A142462.
See similar sequences listed in A256890.
Sequence in context: A257625 A216147 A334774 * A115564 A122961 A165421
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 10 2015
STATUS
approved