login
A334774
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.
26
1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
OFFSET
1,2
COMMENTS
Also the number of permutations of 2 indistinguishable copies of 1..n with exactly k-1 peaks. A peak is an interior maximum.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
T(n,k) = F(2,n,k-1,0) where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0.
A334776(n) = Sum_{k=1..n} (k-1)*T(n,k).
A334777(n) = Sum_{k=1..n} k*T(n,k).
EXAMPLE
Triangle begins:
1;
3, 3;
9, 57, 24;
27, 705, 1449, 339;
81, 7617, 48615, 49695, 7392;
243, 78357, 1290234, 3650706, 2234643, 230217;
729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
PROG
(PARI)
PeaksBySig(sig, D)={
my(F(lev, p, q) = my(key=[lev, p, q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, F(#sig, D[i], 0));
}
Row(n)={ PeaksBySig(vector(n, i, 2), [0..n-1]) }
{ for(n=1, 8, print(Row(n))) }
CROSSREFS
Columns k=1..6 are A000244(n-1), 3*A152494, 3*A152495, 3*A152496, 3*A152497, 3*A152498.
Row sums are A000680.
Main diagonal is A334775.
The version for permutations of 1..n is A008303(n,k-1).
Sequence in context: A257623 A257625 A216147 * A257627 A115564 A122961
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 11 2020
STATUS
approved