login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257630
Near-repdigit triangular numbers.
1
10, 15, 21, 28, 36, 45, 78, 91, 171, 300, 595, 990, 1711, 5565, 6555, 66066, 333336
OFFSET
1,1
COMMENTS
A near-repdigit is a number having all digits but one equal. No other near-repdigit triangular number is known up to 10^15.
No more terms less than 10^1000. It is likely there are no more terms. - Chai Wah Wu, Mar 25 2020
MATHEMATICA
nrepQ[n_] := Module[{dg = Select[DigitCount[n], # > 0 &]}, Length[dg] == 2 && Min[dg] == 1 && Max[dg] > 0]; Select[
Table[n*(n + 1)/2, {n, 10000}], nrepQ]
PROG
(Python)
from sympy import integer_nthroot
def istri(n): return integer_nthroot(8*n+1, 2)[1]
def near_repdigits(digits):
s = set()
for d1 in "0123456789":
for d2 in set("0123456789") - {d1}:
for loc in range(1, digits+1):
nrd = d1*(digits-loc) + d2 + d1*(loc-1)
if nrd[0] != "0": s.add(int(nrd))
return sorted(s)
def afind(maxdigits):
for digits in range(2, maxdigits+1):
for t in near_repdigits(digits):
if istri(t): print(t, end=", ")
afind(100) # Michael S. Branicky, Oct 15 2021
CROSSREFS
KEYWORD
base,nonn,more
AUTHOR
Shyam Sunder Gupta, Jul 12 2015
STATUS
approved