login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257628
Expansion of 1 - f(-x) in powers of x where f() is a Ramanujan theta function.
3
0, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
0
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: x + x^2 * (1 - x) + x^3 * (1 - x) * (1 - x^2) + ....
G.f.: Sum_{k>0} -(-1)^k * (x^((3*k^2 - k)/2) + x^((3*k^2 + k)/2)).
G.f.: Sum_{k>0} -(-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)).
G.f.: -(Product_{j>=1}(1-x^j) - 1), from Euler's Pentagonal Theorem. - Wolfdieter Lang, Feb 16 2021
a(n) = - A010815(n) unless n=0, a(0) = 0.
EXAMPLE
G.f. = x + x^2 - x^5 - x^7 + x^12 + x^15 - x^22 - x^26 + x^35 + x^40 + ...
G.f. = q^25 + q^49 - q^121 - q^169 + q^289 + q^361 - q^529 - q^625 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 - QPochhammer[ x], {x, 0, n}];
a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ n > 0 && IntegerQ[m], - KroneckerSymbol[ 12, m], 0]];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 - eta(x + x * O(x^n)), n))};
(PARI) {a(n) = my(m); if( n>0 && issquare( 24*n + 1, &m), - kronecker( 12, m))};
CROSSREFS
Cf. A001318, A010815, A341418 (convolution triangle).
Sequence in context: A288752 A189706 A188321 * A203568 A327974 A286049
KEYWORD
sign,easy
AUTHOR
Michael Somos, Jul 12 2015
STATUS
approved