login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327712
Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length).
4
1, 1, 1, 3, 3, 9, 29, 57, 135, 615, 2635, 6273, 25151, 82623, 525281, 2941047, 9100709, 38766777, 205155713, 902705793, 7714938567, 52987356783, 204844103977, 1042657233471, 5520661314689, 38159472253821, 211945677298567, 2404720648663335, 19773733727088813
OFFSET
0,4
COMMENTS
Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size as an element. a(5) = 9: 12345, 1235|4, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 1|2345.
MAPLE
with(combinat):
a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0), p=map(h->
permute(h)[], select(l-> nops(l)=nops({l[]}), partition(n)))):
seq(a(n), n=0..28);
# second Maple program:
a:= proc(m) option remember; local b; b:=
proc(n, i, j) option remember; `if`(i*(i+1)/2>=n,
`if`(n=0, (m-j)!*j!, b(n, i-1, j)+
b(n-i, min(n-i, i-1), j+1)/(i-1)!), 0)
end: b(m$2, 0):
end:
seq(a(n), n=0..28);
MATHEMATICA
a[m_] := a[m] = Module[{b}, b[n_, i_, j_] := b[n, i, j] = If[i(i + 1)/2 >= n, If[n == 0, (m - j)! j!, b[n, i - 1, j] + b[n - i, Min[n - i, i - 1], j + 1]/(i - 1)!], 0]; b[m, m, 0]];
a /@ Range[0, 28] (* Jean-François Alcover, May 10 2020, after 2nd Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 22 2019
STATUS
approved