login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364281
Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length as an element.
5
1, 1, 1, 4, 10, 48, 252, 1584, 10800, 93600, 823680, 8588160, 93381120, 1158312960, 14805504000, 215028172800, 3159494553600, 51973589606400, 873152856576000, 16058241239040000, 300754643245056000, 6159522883497984000, 127439374149255168000
OFFSET
0,4
LINKS
Wikipedia, Permutation
EXAMPLE
a(3) = 4: (123), (132), (13)(2), (1)(23).
a(4) = 10: (1234), (1243), (1324), (1342), (1423), (1432), (124)(3),
(142)(3), (1)(234), (1)(243).
MAPLE
a:= proc(m) option remember; local b; b:=
proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!*(m-p)!, b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)))
end: b(m$3)
end:
seq(a(n), n=0..24);
MATHEMATICA
a[m_] := a[m] = Module[{b}, b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!*(m - p)!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]]; b[m, m, m]];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Oct 21 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2023
STATUS
approved