login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081565
Binomial transform of expansion of exp(3cosh(x)).
3
1, 1, 4, 10, 49, 181, 1039, 4915, 32134, 182206, 1330609, 8706655, 70012309, 515822581, 4517489344, 36835737130, 348313165249, 3103526872081, 31462900577419, 303344232041215, 3277823503679554, 33930282904263406
OFFSET
0,3
COMMENTS
Binomial transform of A081564.
LINKS
FORMULA
E.g.f.: exp(x) * exp(3*cosh(x))/e^3 = exp(3*cosh(x)+x-3).
MAPLE
seq(coeff(series(exp(3*cosh(x)+x-3), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Exp[3 Cosh[x] + x - 3], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(3*cosh(x)+x-3) )) \\ G. C. Greubel, Aug 13 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(3*Cosh(x)+x-3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
(Sage) [factorial(n)*( exp(3*cosh(x)+x-3) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
CROSSREFS
Sequence in context: A335873 A364281 A173086 * A151611 A351046 A208236
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved