login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length).
4

%I #16 Jul 17 2023 14:48:40

%S 1,1,1,3,3,9,29,57,135,615,2635,6273,25151,82623,525281,2941047,

%T 9100709,38766777,205155713,902705793,7714938567,52987356783,

%U 204844103977,1042657233471,5520661314689,38159472253821,211945677298567,2404720648663335,19773733727088813

%N Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length).

%C Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size as an element. a(5) = 9: 12345, 1235|4, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 1|2345.

%H Alois P. Heinz, <a href="/A327712/b327712.txt">Table of n, a(n) for n = 0..706</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p with(combinat):

%p a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0), p=map(h->

%p permute(h)[], select(l-> nops(l)=nops({l[]}), partition(n)))):

%p seq(a(n), n=0..28);

%p # second Maple program:

%p a:= proc(m) option remember; local b; b:=

%p proc(n, i, j) option remember; `if`(i*(i+1)/2>=n,

%p `if`(n=0, (m-j)!*j!, b(n, i-1, j)+

%p b(n-i, min(n-i, i-1), j+1)/(i-1)!), 0)

%p end: b(m$2, 0):

%p end:

%p seq(a(n), n=0..28);

%t a[m_] := a[m] = Module[{b}, b[n_, i_, j_] := b[n, i, j] = If[i(i + 1)/2 >= n, If[n == 0, (m - j)! j!, b[n, i - 1, j] + b[n - i, Min[n - i, i - 1], j + 1]/(i - 1)!], 0]; b[m, m, 0]];

%t a /@ Range[0, 28] (* _Jean-François Alcover_, May 10 2020, after 2nd Maple program *)

%Y Cf. A026898, A326493, A327711, A364281.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Sep 22 2019