|
|
A026898
|
|
a(n) = Sum_{k=0..n} (n-k+1)^k.
|
|
45
|
|
|
1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Antidiagonal sums of array A003992.
a(n-1), for n>=1, is the number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=1+max(prefix) for k>=1, that are simultaneously projections as maps f: [n] -> [n] where f(x)<=x and f(f(x))=f(x); see example and the two comments (Arndt, Apr 30 2011 Jan 04 2013) in A000110. - Joerg Arndt, Mar 07 2015
Number of finite sequences s of length n+1 whose discriminator sequence is s itself. Here the discriminator sequence of s is the one where the n-th term (n>=1) is the least positive integer k such that the first n terms are pairwise incongruent, modulo k. - Jeffrey Shallit, May 17 2016
Also the number of set partitions of {1,...,n+1} whose minima form an initial interval of positive integers. For example, the a(3) = 9 set partitions are:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,4},{3}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1,3,4},{2}}
{{1,2,3,4}}
Missing from this list are:
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,2},{3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
(End)
a(n) is the number of m-tuples of nonnegative integers less than or equal to n-m (including the "0-tuple"). - Mathew Englander, Apr 11 2021
|
|
LINKS
|
|
|
FORMULA
|
G.f.: G(0) where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
E.g.f.: Sum_{n>=0} Integral^n exp((n+1)*x) dx^n, where Integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration. - Paul D. Hanna, Dec 28 2013
O.g.f.: Sum_{n>=0} n! * x^n/(1-x)^(n+1) / Product_{k=1..n} (1 + k*x). - Paul D. Hanna, Jul 20 2014
a(n-1) = Sum_{k = 1..n} k^(n-k). - Gus Wiseman, Jan 08 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + (n+1)/w(n))) * ((n+1)/w(n))^(n+2 - (n+1)/w(n)), where w(n) = LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01: [ . . . . . ]
02: [ . 1 . . . ]
03: [ . 1 . . 1 ]
04: [ . 1 . 1 . ]
05: [ . 1 . 1 1 ]
06: [ . 1 1 . . ]
07: [ . 1 1 . 1 ]
08: [ . 1 1 1 . ]
09: [ . 1 1 1 1 ]
10: [ . 1 2 . . ]
11: [ . 1 2 . 1 ]
12: [ . 1 2 . 2 ]
13: [ . 1 2 1 . ]
14: [ . 1 2 1 1 ]
15: [ . 1 2 1 2 ]
16: [ . 1 2 2 . ]
17: [ . 1 2 2 1 ]
18: [ . 1 2 2 2 ]
19: [ . 1 2 3 . ]
20: [ . 1 2 3 1 ]
21: [ . 1 2 3 2 ]
22: [ . 1 2 3 3 ]
23: [ . 1 2 3 4 ]
(End)
|
|
MAPLE
|
a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/(1-(m+1)*x+x*O(x^n))), n)} /* Paul D. Hanna, Sep 13 2011 */
(PARI) {INTEGRATE(n, F)=local(G=F); for(i=1, n, G=intformal(G)); G}
{a(n)=local(A=1+x); A=sum(k=0, n, INTEGRATE(k, exp((k+1)*x+x*O(x^n)))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Dec 28 2013
for(n=0, 30, print1(a(n), ", "))
(PARI)
{a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)} /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
for(n=0, 25, print1(a(n), ", "))
(Haskell)
a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
(Magma) [(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
(Sage) [sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|