The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047970 Antidiagonal sums of nexus numbers (A047969). 23
 1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Lara Pudwell, Oct 23 2008: (Start) A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b. Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q. A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2. For example, if q=5{bar 1}32{bar 4}, then q1=532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a. (End) Number of ordered factorizations over the Gaussian polynomials. Apparently, also the number of permutations in S_n avoiding {bar 3}{bar 1}542 (i.e., every occurrence of 542 is contained in an occurrence of a 31542). - Lara Pudwell, Apr 25 2008 With offset 1, apparently the number of sequences {b(m)} of length n of positive integers with b(1) = 1 and, for all m > 1, b(m) <= max{b(m-1) + 1, max{b(i) | 1 <= i <= m - 1}}. This sequence begins 1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486. The term 144 counts the length 6 sequence 1, 2, 3, 1, 1, 3, for instance. Contrast with the families of sequences discussed in Franklin T. Adams-Watters's comment in A005425. - Rick L. Shepherd, Jan 01 2015 a(n-1) for n >= 1 is the number of length-n restricted growth strings (RGS) [s(0), s(1), ..., s(n-1)] with s(0)=0 and s(k) <= the number of fixed points in the prefix, see example. - Joerg Arndt, Mar 08 2015 Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) = e(k). [Martinez and Savage, 2.15] - Eric M. Schmidt, Jul 17 2017 a(n) counts all positive-integer m-tuples whose maximum is n-m+2. - Mathew Englander, Feb 28 2021 a(n) counts the cyclic permutations of [n+2] that avoid the vincular pattern 12-3-4, i.e., the pattern 1234 where the 1 and 2 are required to be adjacent. - Rupert Li, Jul 27 2021 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 G. E. Andrews, The Theory of Partitions, 1976, page 242 table of Gaussian polynomials. D. Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088 [math.CO], 2011. Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021. Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672. Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016. Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008. Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29. Eric Weisstein's World of Mathematics, Nexus Number Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019. FORMULA Formal o.g.f.: (1 - x)*( Sum_{n >= 0} x^n/(1 - (n + 2)*x) ). - Peter Bala, Jul 09 2014 O.g.f.: Sum_{n>=0} (n+1)! * x^n/(1-x)^(n+1) / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Jul 20 2014 O.g.f.: Sum_{n>=0} x^n / ( (1 - n*x) * (1 - (n+1)*x) ). - Paul D. Hanna, Jul 22 2014 From Mathew Englander, Feb 28 2021: (Start) a(n) = A089246(n+2,0) = A242431(n,0). a(n) = Sum_{m = 1..n+1} Sum_{i = 0..m-1} binomial(m,i) * (n-m+1)^i. a(n) = 1 + Sum_{i = 0..n} i * (i+1)^(n-i). (End) EXAMPLE a(3) = 1 + 5 + 7 + 1 = 14. From Paul D. Hanna, Jul 22 2014:  (Start) G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ... where we have the series identity: A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...) is equal to A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ... and also equals A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ... (End) From Joerg Arndt, Mar 08 2015: (Start) There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros): 01:  [ . . . . ] 02:  [ . . . 1 ] 03:  [ . . 1 . ] 04:  [ . . 1 1 ] 05:  [ . 1 . . ] 06:  [ . 1 . 1 ] 07:  [ . 1 . 2 ] 08:  [ . 1 1 . ] 09:  [ . 1 1 1 ] 10:  [ . 1 1 2 ] 11:  [ . 1 2 . ] 12:  [ . 1 2 1 ] 13:  [ . 1 2 2 ] 14:  [ . 1 2 3 ] (End) MAPLE T := proc(n, k) option remember; local j;     if k=n then 1   elif k>n then 0   else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)     fi end: A047970 := n -> T(n, 0); seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014 MATHEMATICA a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *) PROG (Sage) def A074664():     T = []; n = 0     while True:         T.append(1)         yield T[0]         for k in (0..n):             T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))         n += 1 a = A074664() [next(a) for n in range(25)] # Peter Luschny, May 13 2014 (PARI) /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */ {a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* From o.g.f. (Paul D. Hanna, Jul 22 2014) */ {a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Antidiagonal sums of A085388 (beginning with the second antidiagonal) and A047969. Partial sums are in A026898, A003101. First differences A112532. Cf. A112531, A089246, A242431, A101494. Sequence in context: A014327 A173437 A137550 * A160701 A137551 A148333 Adjacent sequences:  A047967 A047968 A047969 * A047971 A047972 A047973 KEYWORD nonn AUTHOR Alford Arnold, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 12:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)