login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173437
G.f. satisfies: A(A(x)) = Sum_{n>=1} A(x)^(n(n+1)/2)/x^(n(n-1)/2).
0
1, 1, 2, 5, 14, 43, 144, 519, 1986, 8016, 34019, 151136, 700137, 3374510, 16884773, 87496596, 468797414, 2593125476, 14783179194, 86749832134, 523386747685, 3242356121045, 20604155290894, 134183854049837, 894620881934727
OFFSET
1,3
FORMULA
(1) G.f.: A(x) = Sum_{n>=1} x^(n(n+1)/2)/G(x)^(n(n-1)/2) where G(x) is the series reversion of A(x).
(2) Let q = A(x)/x then g.f. A(x) satisfies:
A(A(x)) = Sum_{n>=1} A(x)^n*Product_{k=1..n} (1-x*q^(2k-1))/(1-x*q^(2k))
due to a q-series identity.
(3) Let q = A(x)/x, then g.f. A(x) satisfies the continued fraction:
A(A(x)) = -1 + 1/(1- q*x/(1- (q^2-q)*x/(1- q^3*x/(1- (q^4-q^2)*x/(1- q^5*x/(1- (q^6-q^3)*x/(1- q^7*x/(1- (q^8-q^4)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 43*x^6 + 144*x^7 +...
where:
A(A(x)) = A(x) + A(x)^3/x + A(x)^6/x^3 + A(x)^10/x^6 + A(x)^15/x^10 +...
...
Let q = A(x)/x, then g.f. A(x) satisfies:
A(A(x)) = A(x)*(1-xq)/(1-xq^2) + A(x)^2*(1-xq)(1-xq^3)/((1-xq^2)(1-xq^4)) + A(x)^3*(1-xq)(1-xq^3)(1-xq^5)/((1-xq^2)(1-xq^4)(1-xq^6)) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 324*x^6 + 1380*x^7 + 6137*x^8 + 28348*x^9 + 135549*x^10 + 669406*x^11 + 3408490*x^12 +...
Related expansions are:
A(x)^3/x = x^2 + 3*x^3 + 9*x^4 + 28*x^5+ 90*x^6 + 300*x^7 +...
A(x)^6/x^3 = x^3 + 6*x^4 + 27*x^5 + 110*x^6 + 429*x^7 +...
A(x)^10/x^6 = x^4 + 10*x^5 + 65*x^6 + 350*x^7 + 1700*x^8 +...
A(x)^15/x^10 = x^5 + 15*x^6 + 135*x^7 + 950*x^8 + 5775*x^9 +...
A(x)^21/x^15 = x^6 + 21*x^7 + 252*x^8 + 2275*x^9 + 17199*x^10 +...
...
Let G(x) satisfy A(G(x)) = x, then
A(x) = x + x^3/G(x) + x^6/G(x)^3 + x^10/G(x)^6 + x^15/G(x)^10 +...
where:
G(x) = x - x^2 - x^6 - 4*x^7 - 9*x^8 - 26*x^9 - 129*x^10 - 537*x^11 - 1961*x^12 - 9088*x^13 - 44722*x^14 - 199057*x^15 -...
PROG
(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=sum(m=1, n, x^(m*(m+1)/2)/serreverse(A)^(m*(m-1)/2))); polcoeff(A, n)}
CROSSREFS
Cf. A177133.
Sequence in context: A098569 A137549 A014327 * A137550 A047970 A160701
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 12 2010
EXTENSIONS
Made cosmetic change to example. All formulas have been verified.
STATUS
approved