login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173435 Inverse binomial transform of A143025, assuming offset zero there. 0
8, -6, 12, -25, 52, -106, 212, -420, 832, -1656, 3312, -6640, 13312, -26656, 53312, -106560, 212992, -425856, 851712, -1703680, 3407872, -6816256, 13632512, -27264000, 54525952, -109049856, 218099712, -436203520, 872415232, -1744838656, 3489677312, -6979338240 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Inverse binomial transform of 8, 2, 8, 1, 8, 2 ,8, 1,... with a(0)=8, a(1)=2 etc.

LINKS

Table of n, a(n) for n=0..31.

Index entries for linear recurrences with constant coefficients, signature (-4, -6, -4).

FORMULA

a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3), n>3. G.f.: (26*x+36*x^2+19*x^3+8)/( (2*x+1) * (2*x^2+2*x+1)). [R. J. Mathar, Mar 10 2010]

a(n+1) +2*a(n) = (-1)^(n+1)*A009545(n-1), n > 0.

MATHEMATICA

Join[{8}, LinearRecurrence[{-4, -6, -4}, {-6, 12, -25}, 40]] (* Harvey P. Dale, Sep 25 2013 *)

CROSSREFS

Sequence in context: A034085 A303316 A340518 * A184728 A119876 A281718

Adjacent sequences:  A173432 A173433 A173434 * A173436 A173437 A173438

KEYWORD

sign

AUTHOR

Paul Curtz, Feb 18 2010

EXTENSIONS

Extended by R. J. Mathar, Mar 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)