login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173432
NW-SE diagonal sums of Riordan array A112468.
3
1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0
OFFSET
1,3
COMMENTS
Matches Fibonacci-sequence, such that F(n) + a(n) and F(n) - a(n) = always even.
Periodic sequence with period: [1,1,2,1,1,0]. - Philippe Deléham, Oct 11 2011
FORMULA
a(n) = 1 + A131531(n) with inverse binomial transform: 1, 0, 1, -3, 6, -11, 21, .., a signed variant of A024495. - R. J. Mathar, Mar 04 2010
a(2n+1) = a(2n)-a(2n-1)+2, a(2n) = a(2n-1)-a(2n-2) with a(1) = a(2)=1. - Philippe Deléham, Oct 11 2011
a(n) = a(n-1)-a(n-3)+a(n-4). - Colin Barker, Sep 26 2014
G.f.: -x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)). - Colin Barker, Sep 26 2014
a(n) = 2*ceiling(n/6)-2*floor(n/6)+floor(n/3)-ceiling(n/3). - Wesley Ivan Hurt, Sep 27 2014
a(n) = A001045(n) - A111927(n). - Paul Curtz, Dec 16 2020
MAPLE
A173432:=n->2*ceil(n/6)-2*floor(n/6)+floor(n/3)-ceil(n/3): seq(A173432(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2014
MATHEMATICA
Table[2 Ceiling[n/6] - 2 Floor[n/6] + Floor[n/3] - Ceiling[n/3], {n, 50}] (* Wesley Ivan Hurt, Sep 27 2014 *)
PROG
(PARI) Vec(-x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
(Magma) [2*Ceiling(n/6)-2*Floor(n/6)+Floor(n/3)-Ceiling(n/3) : n in [1..100]]; // Wesley Ivan Hurt, Sep 27 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Feb 18 2010
EXTENSIONS
Corrected and extended by Philippe Deléham, Oct 11 2011
STATUS
approved