login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101675
Expansion of (1 - x - x^2)/(1 + x^2 + x^4).
4
1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2
OFFSET
0,3
COMMENTS
Partial sums are A101676.
Periodic with period 6. - Ray Chandler, Sep 03 2015
FORMULA
a(0) = 1, a(1) = -1, a(2) = -2, a(3) = 1; for n >= 4, a(n) = -a(n-2)-a(n-4).
a(n) = Sum_{k=0..floor(n/2)} (-1)^A010060(n-2k)*(binomial(n-k, k) mod 2)*(-1)^k.
a(n) = cos(2*Pi*n/3 + Pi/6)/sqrt(3) + sin(2*Pi*n/3 + Pi/6) + cos(Pi*n/3 + Pi/3) - sin(Pi*n/3 + Pi/3)/sqrt(3).
a(n) = (-1)^(n+1)*H(n + 4, n mod 2, 1/2) where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], 4). - Peter Luschny, Sep 03 2019
MATHEMATICA
LinearRecurrence[{0, -1, 0, -1}, {1, -1, -2, 1}, 105] (* Ray Chandler, Sep 03 2015 *)
CoefficientList[Series[(1 - x - x^2)/(1 + x^2 + x^4), {x, 0, 150}], x] (* Vincenzo Librandi, Sep 04 2015 *)
PROG
(PARI) Vec((1-x-x^2)/(1+x^2+x^4) + O(x^80)) \\ Michel Marcus, Sep 04 2015
(Magma) I:=[1, -1, -2, 1]; [n le 4 select I[n] else -Self(n-2)-Self(n-4): n in [1..120]]; // Vincenzo Librandi, Sep 04 2015
CROSSREFS
Cf. A101676.
Sequence in context: A335294 A214438 A173432 * A348916 A051764 A348917
KEYWORD
easy,sign
AUTHOR
Paul Barry, Dec 11 2004
STATUS
approved