The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101675 Expansion of (1 - x - x^2)/(1 + x^2 + x^4). 4
 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums are A101676. Periodic with period 6. - Ray Chandler, Sep 03 2015 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1). FORMULA a(0) = 1, a(1) = -1, a(2) = -2, a(3) = 1; for n >= 4, a(n) = -a(n-2)-a(n-4). a(n) = Sum_{k=0..floor(n/2)} (-1)^A010060(n-2k)*(binomial(n-k, k) mod 2)*(-1)^k. a(n) = cos(2*Pi*n/3 + Pi/6)/sqrt(3) + sin(2*Pi*n/3 + Pi/6) + cos(Pi*n/3 + Pi/3) - sin(Pi*n/3 + Pi/3)/sqrt(3). a(n) = (-1)^(n+1)*H(n + 4, n mod 2, 1/2) where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], 4). - Peter Luschny, Sep 03 2019 MATHEMATICA LinearRecurrence[{0, -1, 0, -1}, {1, -1, -2, 1}, 105] (* Ray Chandler, Sep 03 2015 *) CoefficientList[Series[(1 - x - x^2)/(1 + x^2 + x^4), {x, 0, 150}], x] (* Vincenzo Librandi, Sep 04 2015 *) PROG (PARI) Vec((1-x-x^2)/(1+x^2+x^4) + O(x^80)) \\ Michel Marcus, Sep 04 2015 (MAGMA) I:=[1, -1, -2, 1]; [n le 4 select I[n] else -Self(n-2)-Self(n-4): n in [1..120]]; // Vincenzo Librandi, Sep 04 2015 CROSSREFS Cf. A101676. Sequence in context: A120936 A214438 A173432 * A051764 A268533 A275849 Adjacent sequences:  A101672 A101673 A101674 * A101676 A101677 A101678 KEYWORD easy,sign AUTHOR Paul Barry, Dec 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 19:09 EST 2020. Contains 331249 sequences. (Running on oeis4.)