login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101677
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
2
1, 1, -1, -2, -2, -2, -1, -1, -3, -4, -4, -4, -3, -3, -5, -6, -6, -6, -5, -5, -7, -8, -8, -8, -7, -7, -9, -10, -10, -10, -9, -9, -11, -12, -12, -12, -11, -11, -13, -14, -14, -14, -13, -13, -15, -16, -16, -16, -15, -15, -17, -18, -18, -18, -17, -17, -19, -20, -20, -20, -19, -19, -21, -22, -22, -22, -21, -21, -23, -24, -24, -24, -23, -23, -25, -26, -26, -26, -25, -25, -27
OFFSET
0,4
COMMENTS
Partial sums of A101676, second partial sums of A101675.
FORMULA
G.f.: (1-x-x^2)/((1-x)^2*(1+x^2+x^4)).
a(n) = 2*sqrt(3)*sin(2*Pi*n/3)/9 + cos(Pi*n/3) + sin(Pi*n/3)/sqrt(3) - n/3.
a(3*(n+1)) = -A014681(n+1); a(3*n) = a(3*n+1) = 0^n -A014681(n); a(3*n+2) = -(n+1).
MATHEMATICA
LinearRecurrence[{2, -2, 2, -2, 2, -1}, {1, 1, -1, -2, -2, -2}, 81] (* Ray Chandler, Sep 03 2015 *)
CoefficientList[Series[(1-x-x^2)/((1-x)^2(1+x^2+x^4)), {x, 0, 80}], x] (* Harvey P. Dale, Dec 02 2021 *)
PROG
(PARI) x='x+O('x^100); Vec((1-x-x^2)/((1-x)^2*(1+x^2+x^4))) \\ G. C. Greubel, Sep 07 2018
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/((1-x)^2*(1+x^2+x^4)))); // G. C. Greubel, Sep 07 2018
CROSSREFS
Sequence in context: A118400 A159853 A087698 * A364366 A152067 A286756
KEYWORD
easy,sign
AUTHOR
Paul Barry, Dec 11 2004
STATUS
approved