login
A159853
Riordan array ((1-2*x+2*x^2)/(1-x), x/(1-x)).
2
1, -1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 7, 8, 7, 4, 1, 1, 5, 11, 15, 15, 11, 5, 1, 1, 6, 16, 26, 30, 26, 16, 6, 1, 1, 7, 22, 42, 56, 56, 42, 22, 7, 1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, 1, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 1, 10, 46, 130, 255
OFFSET
0,12
COMMENTS
Essentially the same as A087698.
FORMULA
From Peter Bala, Mar 20 2018: (Start)
T(n,k) = C(n,k) - 2*C(n-1,n-k-1) + 2*C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0.
Exp(x) * the e.g.f. for row n = the e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + x + x^2/2! + x^3/3!) = 1 + 2*x + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 15*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1-x) ). (End)
EXAMPLE
Triangle begins:
1;
-1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 3, 4, 4, 3, 1;
...
MAPLE
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
for n from 0 to 10 do
seq(C(n, n-k) - 2*C(n-1, n-k-1) + 2*C(n-2, n-k-2), k = 0..n);
end do; # Peter Bala, Mar 20 2018
MATHEMATICA
Join[{1, -1}, Rest[T[0, 0]=1; T[n_, k_]:=Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1] + 2 Binomial[n - 2, n - k - 2]; Table[T[n, k], {n, 1, 15}, {k, 0, n}]//Flatten]] (* Vincenzo Librandi, Mar 22 2018 *)
PROG
(Sage) # uses[riordan_array from A256893]
riordan_array((1-2*x+2*x^2)/(1-x), x/(1-x), 8) # Peter Luschny, Mar 21 2018
(GAP) Flat(List([0..12], n->List([0..n], k->Binomial(n, k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2)))); # Muniru A Asiru, Mar 22 2018
(Magma) /* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Mar 22 2018
CROSSREFS
Cf. A087698.
Sequence in context: A333698 A213126 A118400 * A087698 A101677 A364366
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Apr 24 2009
STATUS
approved