OFFSET
0,2
COMMENTS
A Riordan array - see the Luzon references.
The second column is A000295 signed. - Michel Marcus, Feb 14 2014
LINKS
Ana Luzón, Iterative Processes Related to Riordan Arrays: The Reciprocation and the Inversion of Power Series, arXiv:0907.2328 [math.CO]; Discrete Math., 310 (2010), 3607-3618.
Ana Luzón and Manuel A. Morón, Riordan matrices in the reciprocation of quadratic polynomials, Linear Algebra Appl. 430 (2009), no. 8-9, 22542270.
FORMULA
From R. J. Mathar, May 31 2009: (Start)
Sum_{k=0..n} T(n,k) = A080956(n).
Conjecture: Sum_{i=0..n} |T(n,k)| = A047926(n). (End)
T(n,k) = (-1)^k*Sum_{i=0..n-k} binomial(n+1,i+k+1)*binomial(i+k-1,k-1) for k > 0. - Vladimir Kruchinin, Nov 22 2016 [corrected by Werner Schulte, May 09 2024]
G.f.: (1-2*x)/(1-x)^2/(1-2*x+y*x). - Vladimir Kruchinin, Nov 22 2016
EXAMPLE
Triangle begins
1;
2, -1;
3, -4, 1;
4, -11, 6, -1;
5, -26, 23, -8, 1;
6, -57, 72, -39, 10, -1;
7, -120, 201, -150, 59, -12, 1;
...
MATHEMATICA
With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x)/(1-x)^2/(1-2*x
+y*x), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
PROG
(Maxima)
T(n, k):=coeff(taylor(1/(1-x)^2*(-x/(1-x))^k, x, 0, 15), x, n); /* Vladimir Kruchinin, Nov 22 2016 */
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Apr 24 2009
EXTENSIONS
a(41) corrected by Georg Fischer, Feb 18 2020
STATUS
approved