login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159854
Riordan array (1-x,x/(1-x)).
3
1, -1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 6, 4, 1, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
OFFSET
0,14
COMMENTS
From Peter Bala, Sep 13 2015: (Start)
The m-th power of the array is the Riordan array (1 - m*x, x/(1 - m*x)).
This array, call it M, is a pseudo-involution in the Riordan group, that is, M*D has order 2, where D = (1,-z) is the diagonal matrix with alternating 1's and -1's on the main diagonal.
This array belongs to the subgroups G := { (f(x)/(x*f'(x)),f(x)): f(x) = x + c(2)*x^2 + c(3)*x^3 + ..., c(i) integral } and H := { (x/f(x),f(x)): f(x) = x + c(2)*x^2 + c(3)*x^3 + ..., c(i) integral } of the Riordan group. Moreover, this array generates the infinite cyclic group (G intersect H). Compare with Pascal's triangle (A007318) which generates the intersection of the Bell subgroup and the hitting-time subgroup of the Riordan group.
(End)
LINKS
Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
FORMULA
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(x^2/2! + x^3/3!) = x^2/2! + 4*x^3/3! + 10*x^4/4! + 20*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
T(n,k) = C(n,n-k) - 2*C(n-1,n-k-1) + C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. Cf. A159855. - Peter Bala, Mar 20 2018
T(n,k) = Sum_{i=0..n-k} binomial(n+1, n-k-i)*Stirling2(i + m + 1, i+1) *(-1)^i, where m = 1 for n >= 0, 0 <= k <= n. See A007318, A370516 for m=0 and m=2. - Igor Victorovich Statsenko, Feb 26 2023
EXAMPLE
Triangle begins:
1
-1,1
0,0,1
0,0,1,1
0,0,1,2,1
0,0,1,3,3,1
...
MAPLE
seq(seq( binomial(n-2, k-2), k = 0..n), n = 0..12); # Peter Bala, Mar 20 2018
MATHEMATICA
Table[Binomial[n-2, k-2], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2019 *)
PROG
(Sage) # uses[riordan_array from A256893]
riordan_array(1-x, x/(1-x), 8) # Peter Luschny, Mar 21 2018
(GAP) Flat(List([0..12], n->List([0..n], k->Binomial(n, k)-2*Binomial(n-1, n-k-1)+Binomial(n-2, n-k-2)))); # Muniru A Asiru, Mar 22 2018
(Magma) /* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)+ Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 11 2019
CROSSREFS
Cf. A144225. - R. J. Mathar, Oct 24 2009
Sequence in context: A036867 A036866 A144225 * A127840 A017837 A145153
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Apr 24 2009
STATUS
approved