login
A036866
Number of partitions of n such that cn(0,5) = cn(1,5) = cn(3,5) <= cn(2,5) = cn(4,5).
0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 3, 2, 1, 0, 5, 5, 5, 2, 1, 15, 10, 9, 5, 2, 37, 23, 19, 11, 5, 77, 54, 37, 23, 11, 151, 118, 79, 47, 25, 282, 245, 160, 98, 51, 520, 483, 325, 196, 108, 944, 918, 636, 390, 216, 1713, 1691, 1221, 758, 431, 3077, 3054, 2274, 1445, 834, 5502, 5413, 4158, 2695, 1592, 9727
OFFSET
1,11
COMMENTS
Also, number of partitions of n such that cn(2,5) = cn(3,5) = cn(4,5) <= cn(0,5) = cn(1,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A115363 A327191 A036867 * A144225 A159854 A127840
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved