login
A036869
Number of partitions of n such that cn(0,5) = cn(1,5) = cn(3,5) < cn(2,5) = cn(4,5).
0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 3, 2, 1, 0, 0, 5, 5, 2, 1, 0, 10, 9, 5, 2, 1, 23, 19, 11, 5, 2, 54, 37, 23, 11, 5, 118, 79, 47, 25, 11, 245, 160, 98, 51, 25, 483, 325, 196, 108, 53, 918, 636, 390, 216, 112, 1691, 1221, 758, 431, 226, 3054, 2274, 1445, 834, 451, 5413, 4158, 2695, 1592, 876, 9478, 7436
OFFSET
1,11
COMMENTS
Also, number of partitions of n such that cn(2,5) = cn(3,5) = cn(4,5) < cn(0,5) = cn(1,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
CROSSREFS
Sequence in context: A079680 A037855 A037873 * A145466 A036868 A326453
KEYWORD
nonn
EXTENSIONS
Edited and extended by Max Alekseyev, Dec 01 2013
STATUS
approved