OFFSET
1,18
COMMENTS
Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n)=a(n-k)+a(n-k+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.
REFERENCES
S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1).
FORMULA
Binet-like formula: a(n) = Sum_{i=1..6} (r_i^n)/(5(r_i)^2+6(r_i)) where r_i is a root of x^6=x+1.
a(n) = A017837(n-6). - R. J. Mathar, Sep 20 2012
G.f.: x*(1-x)*(1+x+x^2+x^3+x^4) / (1-x^5-x^6). - Colin Barker, May 30 2016
PROG
(PARI) Vec(x*(1-x)*(1+x+x^2+x^3+x^4)/(1-x^5-x^6) + O(x^100)) \\ Colin Barker, May 30 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007
STATUS
approved