The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127838 a(1) = 1, a(2) = a(3) = a(4) = 0; a(n) = a(n-4) + a(n-3) for n > 4. 1
 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 2, 4, 6, 5, 6, 10, 11, 11, 16, 21, 22, 27, 37, 43, 49, 64, 80, 92, 113, 144, 172, 205, 257, 316, 377, 462, 573, 693, 839, 1035, 1266, 1532, 1874, 2301, 2798, 3406, 4175, 5099, 6204, 7581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n) = a(n-k) + a(n-k+1) for n > k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence. The sequence can be interpreted as the top-left element of the n-th power of 6 different 4 X 4 (0,1) matrices. - R. J. Mathar, Mar 19 2014 REFERENCES G. Mantel, Resten van wederkeerige Reeksen (Remainders of the reciprocal series), Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184. [From N. J. A. Sloane, Dec 17 2010] S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007, apparently unpublished as of Mar 2014. LINKS Muniru A Asiru, Table of n, a(n) for n = 1..5000 Index entries for linear recurrences with constant coefficients, signature (0,0,1,1). FORMULA Binet-like formula: a(n) = Sum_{i=1...4} (r_i^n)/(3(r_i)^2+4(r_i)) where r_i is a root of x^4=x+1. From R. J. Mathar, Mar 06 2008: (Start) a(n) = A017817(n-5) for n >= 5. O.g.f.: x(x-1)(1+x+x^2)/(x^4+x^3-1). (End) MAPLE P:=proc(n) local a, a0, a1, a2, a3, a4, i; a0:=1; a1:=0; a2:=0; a3:=0; print(a0); print(a1); print(a2); print(a3); for i from 1 by 1 to n do a:=a0+a1; a0:=a1; a1:=a2; a2:=a3; a3:=a; print(a); od; end: P(100); # Paolo P. Lava, Jun 28 2007 MATHEMATICA LinearRecurrence[{0, 0, 1, 1}, {1, 0, 0, 0}, 60] (* Harvey P. Dale, Feb 15 2015 *) CROSSREFS Sequence in context: A247367 A305321 A340274 * A017817 A284834 A279677 Adjacent sequences:  A127835 A127836 A127837 * A127839 A127840 A127841 KEYWORD nonn,easy AUTHOR Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 19:28 EDT 2021. Contains 345388 sequences. (Running on oeis4.)