login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127839
a(1)=1, a(2)=...=a(5)=0, a(n) = a(n-5) + a(n-4) for n > 5.
1
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211
OFFSET
1,15
COMMENTS
Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n) = a(n-k) + a(n-k+1) for n > k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.
REFERENCES
S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007
FORMULA
Binet-like formula: a(n) = Sum_{i=1...5} (r_i^n)/(4(r_i)^2+5(r_i)) where r_i is a root of x^5=x+1.
G.f.: x*(x^4-1)/(x^5+x^4-1). - Harvey P. Dale, Mar 19 2012
a(n) = A017827(n-6) for n >= 6. - R. J. Mathar, May 09 2013
MATHEMATICA
LinearRecurrence[{0, 0, 0, 1, 1}, {1, 0, 0, 0, 0}, 70] (* Harvey P. Dale, Mar 19 2012 *)
CROSSREFS
Sequence in context: A321752 A349839 A247919 * A017827 A279778 A094266
KEYWORD
nonn,easy
AUTHOR
Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007
STATUS
approved