The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247919 Expansion of 1 / (1 + x^4 - x^5) in powers of x. 1
 1, 0, 0, 0, -1, 1, 0, 0, 1, -2, 1, 0, -1, 3, -3, 1, 1, -4, 6, -4, 0, 5, -10, 10, -4, -5, 15, -20, 14, 1, -20, 35, -34, 13, 21, -55, 69, -47, -8, 76, -124, 116, -39, -84, 200, -240, 155, 45, -284, 440, -395, 110, 329, -724, 835, -505, -219, 1053, -1559, 1340 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1,1). FORMULA G.f.: 1 / ((1 - x + x^2) * (1 + x - x^3)). Convolution of A010892 and A247917. a(-5-n) = A003520(n) for all n in Z. 0 = a(n) - a(n+1) - a(n+5) for all n in Z. EXAMPLE G.f. = 1 - x^4 + x^5 + x^8 - 2*x^9 + x^10 - x^12 + 3*x^13 - 3*x^14 + x^15 + ... MATHEMATICA CoefficientList[Series[1/(1 + x^4 - x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *) PROG (PARI) {a(n) = if( n<0, n=-5-n; polcoeff( 1 / (1 - x - x^5) + x * O(x^n), n), polcoeff( 1 / (1 + x^4 - x^5) + x * O(x^n), n))}; (MAGMA) m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + x^4 - x^5)));  // G. C. Greubel, Aug 04 2018 CROSSREFS Cf. A003520, A010892, A247917. Sequence in context: A321754 A321752 A349839 * A127839 A017827 A279778 Adjacent sequences:  A247916 A247917 A247918 * A247920 A247921 A247922 KEYWORD sign,easy AUTHOR Michael Somos, Sep 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 19:00 EST 2022. Contains 350572 sequences. (Running on oeis4.)