login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122433
Riordan array ((1 + x)^2, x/(1 + x)).
3
1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -2, 1, 0, 0, 0, -1, 3, -3, 1, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, -1, 5, -10, 10, -5, 1, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1, 0, 0
OFFSET
0,2
LINKS
Igor Victorovich Statsenko, Riordan generalizations of binomial coefficients, Innovation science No 9-2, State Ufa, Aeterna Publishing House, 2024, pp. 10-13. In Russian.
FORMULA
Inverse is Riordan array ((1 - x)^2, x/(1 - x)).
T(n, k) = (-1)^(n + k)*(C(n, n-k) - 3*C(n-1, n-k-1) + 3*C(n-2, n-k-2) - C(n-3, n-k-3)), where C(n, k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 21 2018
T(n, k) = Sum_{i=0..n-k} binomial(i+3,3)*binomial(n+1,n-k-i)*(-1)^(n+k+i). - Igor Victorovich Statsenko, Sept 23 2024
T(m, n, k) = (-1)^(k + n)*binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], 1) for m = 4. - Peter Luschny, Sep 23 2024
EXAMPLE
Triangle begins
1,
2, 1,
1, 1, 1,
0, 0, 0, 1,
0, 0, 0, -1, 1,
0, 0, 0, 1, -2, 1,
0, 0, 0, -1, 3, -3, 1,
0, 0, 0, 1, -4, 6, -4, 1,
0, 0, 0, -1, 5, -10, 10, -5, 1,
0, 0, 0, 1, -6, 15, -20, 15, -6, 1,
0, 0, 0, -1, 7, -21, 35, -35, 21, -7, 1
MAPLE
C := proc(n, k) if 0 <= k and k <= n then
factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if; end proc:
for n from 0 to 10 do
seq((-1)^(n+k)*(C(n, n-k)-3*C(n-1, n-k-1)+3*C(n-2, n-k-2)-C(n-3, n-k-3)), k = 0..n);
end do; # Peter Bala, Mar 21 2018
T := (m, n, k) -> (-1)^(k + n)*binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], 1); for n from 0 to 9 do seq(simplify(T(4, n, k)), k=0..n) od; # Peter Luschny, Sep 23 2024
CROSSREFS
Row sums are binomial(3, n).
Diagonal sums are A122434.
Product of A007318 and A122432.
Cf. A007318.
Sequence in context: A316866 A277007 A160380 * A056977 A309144 A085425
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 04 2006
STATUS
approved