Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 23 2024 13:10:55
%S 1,2,1,1,1,1,0,0,0,1,0,0,0,-1,1,0,0,0,1,-2,1,0,0,0,-1,3,-3,1,0,0,0,1,
%T -4,6,-4,1,0,0,0,-1,5,-10,10,-5,1,0,0,0,1,-6,15,-20,15,-6,1,0,0
%N Riordan array ((1 + x)^2, x/(1 + x)).
%H Igor Victorovich Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-09-2.pdf#page=10">Riordan generalizations of binomial coefficients</a>, Innovation science No 9-2, State Ufa, Aeterna Publishing House, 2024, pp. 10-13. In Russian.
%F Inverse is Riordan array ((1 - x)^2, x/(1 - x)).
%F T(n, k) = (-1)^(n + k)*(C(n, n-k) - 3*C(n-1, n-k-1) + 3*C(n-2, n-k-2) - C(n-3, n-k-3)), where C(n, k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. - _Peter Bala_, Mar 21 2018
%F T(n, k) = Sum_{i=0..n-k} binomial(i+3,3)*binomial(n+1,n-k-i)*(-1)^(n+k+i). - _Igor Victorovich Statsenko_, Sept 23 2024
%F T(m, n, k) = (-1)^(k + n)*binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], 1) for m = 4. - _Peter Luschny_, Sep 23 2024
%e Triangle begins
%e 1,
%e 2, 1,
%e 1, 1, 1,
%e 0, 0, 0, 1,
%e 0, 0, 0, -1, 1,
%e 0, 0, 0, 1, -2, 1,
%e 0, 0, 0, -1, 3, -3, 1,
%e 0, 0, 0, 1, -4, 6, -4, 1,
%e 0, 0, 0, -1, 5, -10, 10, -5, 1,
%e 0, 0, 0, 1, -6, 15, -20, 15, -6, 1,
%e 0, 0, 0, -1, 7, -21, 35, -35, 21, -7, 1
%p C := proc(n, k) if 0 <= k and k <= n then
%p factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if; end proc:
%p for n from 0 to 10 do
%p seq((-1)^(n+k)*(C(n, n-k)-3*C(n-1, n-k-1)+3*C(n-2, n-k-2)-C(n-3, n-k-3)), k = 0..n);
%p end do; # _Peter Bala_, Mar 21 2018
%p T := (m, n, k) -> (-1)^(k + n)*binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], 1); for n from 0 to 9 do seq(simplify(T(4, n, k)), k=0..n) od; # _Peter Luschny_, Sep 23 2024
%Y Row sums are binomial(3, n).
%Y Diagonal sums are A122434.
%Y Product of A007318 and A122432.
%Y Cf. A007318.
%K easy,sign,tabl
%O 0,2
%A _Paul Barry_, Sep 04 2006