login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159851
Numerator of Hermite(n, 19/22).
1
1, 19, 119, -6935, -218159, 2568059, 312765511, 2213723041, -487764037855, -13553284526621, 804837668442391, 48090864254828249, -1228751452551908111, -163002147394507489205, 768611269232660622311, 566854889488011925250449, 7980183992957668520769601
OFFSET
0,2
FORMULA
E.g.f.: exp(-x*(121*x-19)). - Simon Plouffe, Jun 22 2018
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 11^n * Hermite(n, 19/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(19/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -19*a(n-1) +242*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021
EXAMPLE
Numerators of 1, 19/11, 119/121, -6935/1331, -218159/14641, ...
MATHEMATICA
Numerator[Table[HermiteH[n, 19/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
Table[11^n*HermiteH[n, 19/22], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 19/22)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(19*x - 121*x^2))) \\ G. C. Greubel, Jul 14 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(19/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
CROSSREFS
Cf. A001020 (denominators).
Sequence in context: A293879 A044351 A044732 * A221372 A252924 A157340
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved