login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335294
a(n) = pi(n) - pi(Sum_{k=1..n-1} a(k)) with a(1) = 1, where pi() is the prime counting function A000720.
7
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1
OFFSET
1,13
COMMENTS
Alkan, Booker, & Luca prove that every nonnegative integer appears infinitely often.
LINKS
Altug Alkan, Andrew R. Booker, and Florian Luca, On a recursively defined sequence involving the prime counting function, arXiv:2006.08013 [math.NT], 2020.
MAPLE
A[1]:= 1: S:= 1:
for n from 2 to 100 do
A[n]:= numtheory:-pi(n) - numtheory:-pi(S);
S:= S + A[n];
od:
seq(A[n], n=1..100); # Robert Israel, Jun 01 2020
MATHEMATICA
a[1] = 1; a[n_] := a[n] = PrimePi[n] - PrimePi[Sum[a[k], {k, 1, n-1}]]; Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
upto[nn_] := Reap[Block[{i=0, is=0, sp=2, p=2, s=1}, Sow@ 1; Do[ If[n == p, i++; p = NextPrime@ p]; Sow[i - is]; s += i - is; While[ s >= sp, is++; sp = NextPrime@ sp], {n, 2, nn}]]] [[2, 1]]; upto[97] (* Giovanni Resta, Jun 02 2020 *)
PROG
(PARI) a=vector(10^2); a[1] = 1; for(n=2, #a, a[n] = primepi(n) - primepi(sum(k=1, n-1, a[k]))); a
(PARI) first(n) = {my(res = vector(n), pp = 0, s = 1, ps=0); primepivec = vector(n); forprime(p = 2, n, primepivec[p] = 1; ); for(i = 2, n, primepivec[i] += primepivec[i-1] ); res[1] = 1; for(i = 2, n, if(isprime(i), pp++); res[i] = pp - ps; s+=(pp-ps); ps = primepivec[s]; ); res } \\ David A. Corneth, Jun 01 2020
(Python)
from sympy import primepi
A = [1]
S = 1
for n in range(1, 101):
A += [primepi(n+1) - primepi(S), ]
S += A[n]
print(A) # Indranil Ghosh, Jun 21 2020, after Maple
CROSSREFS
Cf. A000720, A335337 (when k appears), A334714 (partial sums).
Sequence in context: A319394 A278347 A120936 * A214438 A173432 A101675
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jun 01 2020
STATUS
approved