login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = pi(n) - pi(Sum_{k=1..n-1} a(k)) with a(1) = 1, where pi() is the prime counting function A000720.
7

%I #62 Jul 13 2021 01:39:22

%S 1,1,1,0,1,1,1,1,0,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,1,1,0,0,1,1,2,2,1,1,

%T 0,0,1,1,1,1,2,1,2,2,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,2,2,1,1,0,0,1,1,

%U 1,1,2,1,2,2,1,0,0,0,1,1,1,1,2,1,1,1,1,0,1,1,1,1,1,1,0,0,1

%N a(n) = pi(n) - pi(Sum_{k=1..n-1} a(k)) with a(1) = 1, where pi() is the prime counting function A000720.

%C Alkan, Booker, & Luca prove that every nonnegative integer appears infinitely often.

%H Robert Israel, <a href="/A335294/b335294.txt">Table of n, a(n) for n = 1..10000</a>

%H Altug Alkan, Andrew R. Booker, and Florian Luca, <a href="https://arxiv.org/abs/2006.08013">On a recursively defined sequence involving the prime counting function</a>, arXiv:2006.08013 [math.NT], 2020.

%p A[1]:= 1: S:= 1:

%p for n from 2 to 100 do

%p A[n]:= numtheory:-pi(n) - numtheory:-pi(S);

%p S:= S + A[n];

%p od:

%p seq(A[n],n=1..100); # _Robert Israel_, Jun 01 2020

%t a[1] = 1; a[n_] := a[n] = PrimePi[n] - PrimePi[Sum[a[k], {k, 1, n-1}]]; Array[a, 100] (* _Amiram Eldar_, Jun 01 2020 *)

%t upto[nn_] := Reap[Block[{i=0, is=0, sp=2, p=2, s=1}, Sow@ 1; Do[ If[n == p, i++; p = NextPrime@ p]; Sow[i - is]; s += i - is; While[ s >= sp, is++; sp = NextPrime@ sp], {n, 2, nn}]]] [[2, 1]]; upto[97] (* _Giovanni Resta_, Jun 02 2020 *)

%o (PARI) a=vector(10^2); a[1] = 1; for(n=2, #a, a[n] = primepi(n) - primepi(sum(k=1, n-1, a[k]))); a

%o (PARI) first(n) = {my(res = vector(n), pp = 0, s = 1, ps=0); primepivec = vector(n); forprime(p = 2, n, primepivec[p] = 1; ); for(i = 2, n, primepivec[i] += primepivec[i-1] ); res[1] = 1; for(i = 2, n, if(isprime(i), pp++); res[i] = pp - ps; s+=(pp-ps); ps = primepivec[s]; ); res } \\ _David A. Corneth_, Jun 01 2020

%o (Python)

%o from sympy import primepi

%o A = [1]

%o S = 1

%o for n in range(1, 101):

%o A += [primepi(n+1) - primepi(S), ]

%o S += A[n]

%o print(A) # _Indranil Ghosh_, Jun 21 2020, after Maple

%Y Cf. A000720, A335337 (when k appears), A334714 (partial sums).

%K nonn,easy

%O 1,13

%A _Altug Alkan_, Jun 01 2020