login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A111927
Expansion of x^3 / ((x-1)*(2*x-1)*(x^2-x+1)).
8
0, 0, 0, 1, 4, 10, 21, 42, 84, 169, 340, 682, 1365, 2730, 5460, 10921, 21844, 43690, 87381, 174762, 349524, 699049, 1398100, 2796202, 5592405, 11184810, 22369620, 44739241, 89478484, 178956970, 357913941, 715827882, 1431655764, 2863311529, 5726623060
OFFSET
0,5
COMMENTS
Binomial transform of sequence (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note: the binomial transform of the sequence (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A111926; the binomial transform of the sequence (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A024495 (disregarding first two terms, which are both zero).
The sequence relates the calculation of the logarithm of the Twin Prime Constants of order 3 to the sequence of prime zeta functions, see definition 7 in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009
LINKS
Antoine-Augustin Cournot, Solution d'un problème d'analyse combinatoire, Bulletin des Sciences Mathématiques, Physiques et Chimiques, item 34, volume 11, 1829, pages 93-97. Also at Google Books. Page 97 case p=3 formula y^(0) = a(n). (But misprint "- (2/3)*cos" should be "+ (2/3)*cos".)
Christian Ramus, Solution générale d'un problème d'analyse combinatoire, Journal für die Reine und Angewandte Mathematik (Crelle's journal), volume 11, 1834, pages 353-355. Page 353 case p=3 formula y^(0) = a(n). (But misprint "+ (1/3)*cos" should be "+ (2/3)*cos", per the general case equation A page 354.)
Kevin Ryde, Iterations of the Terdragon Curve, section Lines, quantity Lines_k(2) = a(k+1).
FORMULA
a(n+2) - a(n+1) + a(n) = A000225(n).
a(n) - a(n-1) = A024495(n-1).
From Colin Barker, Feb 10 2017: (Start)
a(n) = 2^n/3 + 2*cos((Pi*n)/3)/3 - 1. [Cournot]
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) for n > 3.
(End)
a(n) = (2^n+A087204(n))/3 - 1. - R. J. Mathar, Aug 07 2017
MAPLE
seq(sum(binomial(n, k*3), k=1..n), n=0..33); # Zerinvary Lajos, Oct 23 2007
MATHEMATICA
LinearRecurrence[{4, -6, 5, -2}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Jul 04 2017 *)
PROG
(PARI) concat(vector(3), Vec(x^3/((x-1)*(2*x-1)*(x^2-x+1)) + O(x^40))) \\ Colin Barker, Feb 10 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Aug 21 2005
STATUS
approved