login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264079
Expansion of b(2)*b(6)/(1 - 2*x + x^3 - x^4 - x^5 + 2*x^6), where b(k) = (1-x^k)/(1-x).
2
1, 4, 10, 21, 41, 79, 150, 282, 527, 982, 1829, 3405, 6337, 11790, 21932, 40797, 75888, 141161, 262573, 488407, 908474, 1689830, 3143211, 5846606, 10875117, 20228513, 37626513, 69988066, 130182920, 242149745, 450416216, 837807065, 1558382345, 2898705007, 5391803070
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_20 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009, page 31.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics, Volume 17, Supplement 1 (2010), page 186.
FORMULA
G.f.: (1 + x)^2*(1 - x + x^2)*(1 + x + x^2)/((1 - x)*(1 - x - x^2 - x^4 - 2*x^5)).
a(n) = 2*a(n-1) - a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) for n>6.
MATHEMATICA
CoefficientList[Series[(1 + x)^2 (1 - x + x^2) (1 + x + x^2)/((1 - x) (1 - x - x^2 - x^4 - 2 x^5)), {x, 0, 40}], x]
LinearRecurrence[{2, 0, -1, 1, 1, -2}, {1, 4, 10, 21, 41, 79, 150}, 40] (* Harvey P. Dale, Jan 18 2021 *)
PROG
(Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)*b(6)/(1-2*x+x^3-x^4-x^5+2*x^6)));
CROSSREFS
Cf. similar sequences listed in A265055.
Sequence in context: A266354 A121497 A132925 * A053643 A111927 A329361
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 28 2015
STATUS
approved