login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264081
The sum of the 2 X 2 idempotent matrices over Z/nZ is congruent to {{a(n),0}, {0,a(n)}} (mod n).
0
0, 0, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 8, 14, 1, 1, 8, 1, 16, 7, 8, 1, 14, 1, 8, 1, 26, 1, 22, 1, 1, 14, 8, 18, 26, 1, 8, 1, 8, 1, 14, 1, 26, 5, 8, 1
OFFSET
1,6
EXAMPLE
The 2 X 2 idempotent matrices over Z/3Z are {{0, 0}, {0, 0}}, {{0, 0}, {0,1}}, {{0, 0}, {1, 1}}, {{0, 0}, {2, 1}}, {{0, 1}, {0, 1}}, {{0, 2}, {0, 1}}, {{1, 0}, {0, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 0}}, {{1, 0}, {2, 0}}, {{1, 1}, {0, 0}}, {{1, 2}, {0, 0}}, {{2, 1}, {1, 2}}, {{2, 2}, {2, 2}}. Their sum is {{10, 9}, {9, 10}} == 1*{{1, 0}, {0, 1}} (mod 3) and therefore a(3) = 1.
MATHEMATICA
K[n_] := K[n] = Mod[Sum[If[ Mod[{{a, b}, {c, d}}.{{a, b}, {c, d}} - {{a, b}, {c, d}}, n] == 0{{a, b}, {c, d}}, {{a, b}, {c, d}}, 0], {a, n}, {b, n}, {c, n}, {d, n}], n]; Table[K[n][[1, 1]], {n, 1, 22}]
PROG
(PARI) a(n) = lift(sum(i=0, n-1, sum(j=0, n-1, sum(k=0, n-1, sum(l=0, n-1, m = Mod([i, j; k, l], n); if ((m^2 == m), m[1, 1])))))); \\ Michel Marcus, Apr 04 2016
CROSSREFS
Cf. A226756.
Sequence in context: A171660 A157117 A322143 * A061538 A123602 A208896
KEYWORD
nonn,more
AUTHOR
STATUS
approved