login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061538
Product of all divisors of n, divided by product of unitary divisors; or equivalently product of non-unitary divisors of n.
5
1, 1, 1, 2, 1, 1, 1, 8, 3, 1, 1, 12, 1, 1, 1, 64, 1, 18, 1, 20, 1, 1, 1, 576, 5, 1, 27, 28, 1, 1, 1, 1024, 1, 1, 1, 7776, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 7, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 3600, 1, 1, 63, 32768, 1, 1, 1, 68, 1, 1, 1, 26873856, 1, 1, 75, 76, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = n^(A048105(n)/2) = n^((A000005(n) - A034444(n))/2).
EXAMPLE
For n = 16: only {1,16} are unitary, while {2,4,8} are non-unitary divisors, so a(16) = 64.
When all divisors are unitary, then A048105 is 0 and the corresponding terms here are equal to 1.
MATHEMATICA
Table[Times @@ Select[Divisors@ n, ! CoprimeQ[#, n/#] &], {n, 79}] (* Michael De Vlieger, Mar 17 2017 *)
a[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Array[a, 80] (* Amiram Eldar, Jul 22 2024 *)
PROG
(PARI) { for (n=1, 1000, s=divisors(n); a=1; for (i=2, length(s), d=s[i]; if (gcd(d, n/d)!=1, a*=d)); write("b061538.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009
(PARI) a(n) = {my(f = factor(n)); n^((numdiv(f) - 2^omega(f))/2); } \\ Amiram Eldar, Jul 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 15 2001
EXTENSIONS
Corrected and edited by Jaroslav Krizek, Mar 05 2009
STATUS
approved