login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061540
Number of connected labeled graphs with n nodes and n+1 edges.
5
0, 0, 0, 6, 205, 5700, 156555, 4483360, 136368414, 4432075200, 154060613850, 5720327205120, 226378594906035, 9523895202838016, 424814409531910125, 20037831121798963200, 996964614369038858060, 52198565072252054814720
OFFSET
1,4
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 407, Eq. (6.5).
LINKS
Sergey Serebryakov, Table of n, a(n) for n = 1..40
Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
S. Janson, D. E. Knuth, T. Luczak and B. Pittel, The Birth of the Giant Component, Random Structures and Algorithms Vol. 4 (1993), 233-358.
S. Janson, D. E. Knuth, T. Luczak and B. Pittel, The Birth of the Giant Component, arXiv:math/9310236 [math.PR], 1993.
E. M. Wright, The Number of Connected Sparsely Edged Graphs, Journal of Graph Theory Vol. 1 (1977), 317-330.
FORMULA
E.g.f.: W1(x) := T(x)^4/24 * (6-T(x))/(1-T(x))^3 where T(x) is the e.g.f. for rooted labeled trees (A000169), i.e. T(x) = -LambertW(-x) = x*exp(T(x)).
a(n) ~ 5*n^(n+1)/24 * (1 - 7/5*sqrt(2*Pi/n)). - Vaclav Kotesovec, Jul 09 2013
MAPLE
A001864 := proc(n)
add(binomial(n, s)*s^s*(n-s)^(n-s), s=1..n-1) ;
end proc:
A061540 := proc(n)
(n-1)*(5*n^2+3*n+2)*n^(n-2)-14*A001864(n) ;
%/24 ;
end proc: # R. J. Mathar, May 10 2016 see Chapter 6.3 in Bona's Handbook of Combinatorics
MATHEMATICA
max = 18; t[x_] := -ProductLog[-x]; w1[x_] := t[x]^4/24*(6-t[x])/(1-t[x])^3; Drop[ CoefficientList[ Series[ w1[x], {x, 0, max}], x]*Range[0, max]!, 1] (* Jean-François Alcover, Apr 02 2012, after e.g.f. *)
PROG
(Python)
from math import comb
def A061540(n): return 0 if n<2 else ((n*(n*(5*n - 2) - 1) - 2)*n**(n-2)-14*((sum(comb(n, k)*(n-k)**(n-k)*k**k for k in range(1, (n+1>>1)))<<1) + (0 if n&1 else comb(n, m:=n>>1)*m**n)))//24 # Chai Wah Wu, Apr 26 2023
CROSSREFS
KEYWORD
easy,nice,nonn,changed
AUTHOR
RAVELOMANANA Vlady (vlad(AT)lri.fr), May 16 2001
STATUS
approved