login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected labeled graphs with n nodes and n+1 edges.
5

%I #42 Dec 18 2024 15:05:03

%S 0,0,0,6,205,5700,156555,4483360,136368414,4432075200,154060613850,

%T 5720327205120,226378594906035,9523895202838016,424814409531910125,

%U 20037831121798963200,996964614369038858060,52198565072252054814720

%N Number of connected labeled graphs with n nodes and n+1 edges.

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 407, Eq. (6.5).

%H Sergey Serebryakov, <a href="/A061540/b061540.txt">Table of n, a(n) for n = 1..40</a>

%H Steven R. Finch, <a href="https://arxiv.org/abs/2408.12440">An exceptional convolutional recurrence</a>, arXiv:2408.12440 [math.CO], 22 Aug 2024.

%H S. Janson, D. E. Knuth, T. Luczak and B. Pittel, <a href="https://dx.doi.org/10.1002/rsa.3240040303">The Birth of the Giant Component</a>, Random Structures and Algorithms Vol. 4 (1993), 233-358.

%H S. Janson, D. E. Knuth, T. Luczak and B. Pittel, <a href="https://arxiv.org/abs/math/9310236">The Birth of the Giant Component</a>, arXiv:math/9310236 [math.PR], 1993.

%H E. M. Wright, <a href="http://dx.doi.org/10.1002/jgt.3190010407">The Number of Connected Sparsely Edged Graphs</a>, Journal of Graph Theory Vol. 1 (1977), 317-330.

%F E.g.f.: W1(x) := T(x)^4/24 * (6-T(x))/(1-T(x))^3 where T(x) is the e.g.f. for rooted labeled trees (A000169), i.e. T(x) = -LambertW(-x) = x*exp(T(x)).

%F a(n) ~ 5*n^(n+1)/24 * (1 - 7/5*sqrt(2*Pi/n)). - _Vaclav Kotesovec_, Jul 09 2013

%p A001864 := proc(n)

%p add(binomial(n,s)*s^s*(n-s)^(n-s),s=1..n-1) ;

%p end proc:

%p A061540 := proc(n)

%p (n-1)*(5*n^2+3*n+2)*n^(n-2)-14*A001864(n) ;

%p %/24 ;

%p end proc: # _R. J. Mathar_, May 10 2016 see Chapter 6.3 in Bona's Handbook of Combinatorics

%t max = 18; t[x_] := -ProductLog[-x]; w1[x_] := t[x]^4/24*(6-t[x])/(1-t[x])^3; Drop[ CoefficientList[ Series[ w1[x], {x, 0, max}], x]*Range[0, max]!, 1] (* _Jean-François Alcover_, Apr 02 2012, after e.g.f. *)

%o (Python)

%o from math import comb

%o def A061540(n): return 0 if n<2 else ((n*(n*(5*n - 2) - 1) - 2)*n**(n-2)-14*((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n)))//24 # _Chai Wah Wu_, Apr 26 2023

%Y A diagonal of A343088.

%Y Cf. A000169, A000272, A057500, A061541, A061542, A061543, A096117, A061544, A096150, A096224.

%K easy,nice,nonn,changed

%O 1,4

%A RAVELOMANANA Vlady (vlad(AT)lri.fr), May 16 2001