login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A054653
Number of acyclic orientations of the Hamming graph (K_3) x (K_n).
1
1, 6, 204, 19164, 3733056, 1288391040, 712770186240, 589563294888960, 692610802412175360, 1110893919113884631040, 2357555468242103997235200, 6453187419589244410090291200, 22305345996450386267133758668800
OFFSET
0,2
COMMENTS
This number is equivalent to the number of plans (i.e. structural solutions) of the open shop problem with n jobs and 3 machines - see problems in scheduling theory.
REFERENCES
M. Harborth, Structural analysis of shop scheduling problems, PhD thesis, Otto-von-Guericke-Univ. Magdeburg, GCA-Verlag, 1999 (in German)
LINKS
M. Harborth, Structural analysis of shop scheduling problems, (PhD thesis in German with English abstract).
K. B. Athreya, C. R. Pranesachar, and N. M. Singhi, On the number of Latin rectangles and chromatic polynomial of L(K_{r,s}), European J. Combin. 1 (1980) 9-17.
FORMULA
a(n) = (-1)^n*(z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1)^b*2^c*((z-n+a)!)^2/(a!c!) *Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]) with z=-1.
MATHEMATICA
Table[n!*Evaluate[(-1)^n*FunctionExpand[z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1 )^b*2^c*((z-n+a)!)^2/(a!c!)*Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]]/.z->-1]/n!, {n, 0, 15}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. Harborth (Martin.Harborth(AT)vt.siemens.de)
STATUS
approved