login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054653 Number of acyclic orientations of the Hamming graph (K_3) x (K_n). 1
1, 6, 204, 19164, 3733056, 1288391040, 712770186240, 589563294888960, 692610802412175360, 1110893919113884631040, 2357555468242103997235200, 6453187419589244410090291200, 22305345996450386267133758668800 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This number is equivalent to the number of plans (i.e. structural solutions) of the open shop problem with n jobs and 3 machines - see problems in scheduling theory.
REFERENCES
M. Harborth, Structural analysis of shop scheduling problems, PhD thesis, Otto-von-Guericke-Univ. Magdeburg, GCA-Verlag, 1999 (in German)
LINKS
M. Harborth, Structural analysis of shop scheduling problems, (PhD thesis in German with English abstract).
K. B. Athreya, C. R. Pranesachar, and N. M. Singhi, On the number of Latin rectangles and chromatic polynomial of L(K_{r,s}), European J. Combin. 1 (1980) 9-17.
FORMULA
a(n) = (-1)^n*(z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1)^b*2^c*((z-n+a)!)^2/(a!c!) *Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]) with z=-1.
MATHEMATICA
Table[n!*Evaluate[(-1)^n*FunctionExpand[z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1 )^b*2^c*((z-n+a)!)^2/(a!c!)*Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]]/.z->-1]/n!, {n, 0, 15}]
CROSSREFS
Sequence in context: A115491 A082405 A183595 * A061540 A173370 A159307
KEYWORD
nonn,easy
AUTHOR
M. Harborth (Martin.Harborth(AT)vt.siemens.de)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 04:25 EDT 2024. Contains 375859 sequences. (Running on oeis4.)