login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054653 Acyclic orientations of the Hamming graph (K_3) x (K_n). 1
1, 6, 204, 19164, 3733056, 1288391040, 712770186240, 589563294888960, 692610802412175360, 1110893919113884631040, 2357555468242103997235200, 6453187419589244410090291200, 22305345996450386267133758668800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This number is equivalent to the number of plans (i.e. structural solutions) of the open shop problem with n jobs and 3 machines - see problems in scheduling theory.

REFERENCES

M. Harborth, Structural analysis of shop scheduling problems, PhD thesis, Otto-von-Guericke-Univ. Magdeburg, GCA-Verlag, 1999 (in German)

LINKS

Table of n, a(n) for n=0..12.

M. Harborth, Structural analysis of shop scheduling problems, (PhD thesis in German with English abstract).

K. B. Athreya, C. R. Pranesachar, and N. M. Singhi, On the number of Latin rectangles and chromatic polynomial of L(K_{r,s}), European J. Combin. 1 (1980) 9-17.

FORMULA

a(n) = (-1)^n*(z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1)^b*2^c*((z-n+a)!)^2/(a!c!) *Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]) with z=-1.

MATHEMATICA

Table[n!*Evaluate[(-1)^n*FunctionExpand[z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1 )^b*2^c*((z-n+a)!)^2/(a!c!)*Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]]/.z->-1]/n!, {n, 0, 15}]

CROSSREFS

Cf. A054652, A053870, A054583.

Sequence in context: A115491 A082405 A183595 * A061540 A173370 A159307

Adjacent sequences: A054650 A054651 A054652 * A054654 A054655 A054656

KEYWORD

nonn,easy

AUTHOR

M. Harborth (Martin.Harborth(AT)vt.siemens.de)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 31 01:17 EST 2023. Contains 359947 sequences. (Running on oeis4.)