login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159307
Numerator of Hermite(n, 3/11).
1
1, 6, -206, -4140, 124716, 4755816, -122371464, -7639673616, 161459218320, 15759163430496, -257103196917984, -39679794683308224, 446329942095824064, 117908103412902026880, -696705377356050344064, -403652886627048369133824, 107123200040172534149376
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 26 2018: (Start)
a(n) = 11^n * Hermite(n,6/11).
E.g.f.: exp(6*x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
a(n) = 6*a(n-1) - 242*(n-1)*a(n-2) for n>1. - Vincenzo Librandi, Jun 27 2018 [corrected by Georg Fischer, Dec 23 2019]
MATHEMATICA
Numerator[Table[HermiteH[n, 3/11], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/11)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 26 2018
(Magma) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-242*(n-2)*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jan 27 2018
CROSSREFS
Cf. A159280.
Sequence in context: A054653 A061540 A173370 * A284768 A024083 A172530
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved