login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159310
G.f.: Product_{n>=1} (1 + a(n)*x^n/n!) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! = LambertW(-x)/(-x).
1
1, 3, 7, 97, 601, 7576, 116929, 2482537, 42814321, 1040362966, 25933795801, 760154969850, 23297606120881, 816970034324900, 29137514248718373, 1194044411689941241, 48661170952876980481, 2227962859999303395766
OFFSET
1,2
FORMULA
G.f.: Sum_{n>=1} log(1 + a(n)*x^n/n!) = Sum_{n>=1} n^(n-1)*x^n/n! = -LambertW(-x).
G.f.: Sum_{n>=1} log(1 + a(n)*exp(-n*x)*x^n/n!) = x.
From Paul D. Hanna, Apr 15 2009: (Start)
G.f.: Sum_{n>=1} n*a(n)*x^n/(n! + a(n)*x^n) = Sum_{n>=1} n^n*x^n/n!.
G.f.: Sum_{n>=1} n*a(n)*x^n/(n!*exp(nx) + a(n)*x^n) = x/(1-x).
Recurrence:
a(n) = n^(n-1) + (n-1)!*((-1)^n + Sum_{d|n, 1<d<n} d*( -a(d)/d! )^(n/d) ) for n > 1 with a(1)=1.
(End)
EXAMPLE
G.f.: W(x) = (1+x)*(1+3*x^2/2!)*(1+7*x^3/3!)*(1+97*x^4/4!)*(1+601*x^5/5!)* ...
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
where W(x/exp(x)) = exp(x) and exp(x*W(x)) = W(x) = LambertW(-x)/(-x).
PROG
(PARI) {a(n)=if(n<1, 0, polcoeff(sum(k=0, n, (k+1)^(k-1)*x^k/k!)/prod(k=1, n-1, 1+a(k)*x^k +x*O(x^n)), n))}
(PARI) {a(n)=if(n<1, 0, if(n==1, 1, n^(n-1) + (n-1)!*((-1)^n + sumdiv(n, d, if(d<n&d>1, d*(-a(d)/d!)^(n/d))))))} \\ Paul D. Hanna, Apr 15 2009
CROSSREFS
Cf. A137852.
Sequence in context: A088419 A062592 A074349 * A362682 A299377 A129660
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 15 2009
STATUS
approved