Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 04 2018 03:17:09
%S 1,3,7,97,601,7576,116929,2482537,42814321,1040362966,25933795801,
%T 760154969850,23297606120881,816970034324900,29137514248718373,
%U 1194044411689941241,48661170952876980481,2227962859999303395766
%N G.f.: Product_{n>=1} (1 + a(n)*x^n/n!) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! = LambertW(-x)/(-x).
%F G.f.: Sum_{n>=1} log(1 + a(n)*x^n/n!) = Sum_{n>=1} n^(n-1)*x^n/n! = -LambertW(-x).
%F G.f.: Sum_{n>=1} log(1 + a(n)*exp(-n*x)*x^n/n!) = x.
%F From _Paul D. Hanna_, Apr 15 2009: (Start)
%F G.f.: Sum_{n>=1} n*a(n)*x^n/(n! + a(n)*x^n) = Sum_{n>=1} n^n*x^n/n!.
%F G.f.: Sum_{n>=1} n*a(n)*x^n/(n!*exp(nx) + a(n)*x^n) = x/(1-x).
%F Recurrence:
%F a(n) = n^(n-1) + (n-1)!*((-1)^n + Sum_{d|n, 1<d<n} d*( -a(d)/d! )^(n/d) ) for n > 1 with a(1)=1.
%F (End)
%e G.f.: W(x) = (1+x)*(1+3*x^2/2!)*(1+7*x^3/3!)*(1+97*x^4/4!)*(1+601*x^5/5!)* ...
%e W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
%e where W(x/exp(x)) = exp(x) and exp(x*W(x)) = W(x) = LambertW(-x)/(-x).
%o (PARI) {a(n)=if(n<1, 0, polcoeff(sum(k=0,n,(k+1)^(k-1)*x^k/k!)/prod(k=1, n-1, 1+a(k)*x^k +x*O(x^n)), n))}
%o (PARI) {a(n)=if(n<1, 0, if(n==1, 1,n^(n-1) + (n-1)!*((-1)^n + sumdiv(n, d, if(d<n&d>1, d*(-a(d)/d!)^(n/d))))))} \\ _Paul D. Hanna_, Apr 15 2009
%Y Cf. A137852.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Apr 15 2009