login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159313
G.f.: 1/Product_{n>=1} (1 - a(n)*x^n/n!) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
0
1, 1, 7, 55, 601, 7136, 116929, 1985607, 42814321, 954103114, 25933795801, 717297529686, 23297606120881, 770246625909788, 29137514248718373, 1127405063005559911, 48661170952876980481, 2139268956511467712586, 104127343895537535804841, 5158373570420037618149856
OFFSET
1,3
FORMULA
a(n) = n^(n-1) - (n-1)!*[ Sum_{d divides n, d<n} d*( a(d)/d! )^(n/d) ] for n>1 with a(1)=1.
G.f.: Sum_{n>=1} -log(1 - a(n)*x^n/n!) = Sum_{n>=1} n^(n-1)*x^n/n! = -LambertW(-x).
G.f.: Sum_{n>=1} -log(1 - a(n)*exp(-n*x)*x^n/n!) = x.
G.f.: Sum_{n>=1} n*a(n)*x^n/[n! - a(n)*x^n] = Sum_{n>=1} n^n*x^n/n!.
G.f.: Sum_{n>=1} n*a(n)*x^n/[n!*exp(nx) - a(n)*x^n] = x/(1-x).
EXAMPLE
G.f.: W(x) = 1/[(1-x)*(1-x^2/2!)*(1-7*x^3/3!)*(1-55*x^4/4!)*(1-601*x^5/5!)*...]
where W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
and W(x/exp(x)) = exp(x) and exp(x*W(x)) = W(x) = LambertW(-x)/(-x).
MATHEMATICA
a[n_] := a[n] = n^(n-1) - (n-1)! * DivisorSum[n, #*(a[#]/#!)^(n/#) &, #<n &]; Array[a, 20] (* Amiram Eldar, Aug 18 2023 *)
PROG
(PARI) {a(n)=if(n<1, 0, if(n==1, 1, n^(n-1) - (n-1)!*sumdiv(n, d, if(d<n, d*(a(d)/d!)^(n/d)))))}
(PARI) {a(n)=if(n<1, 0, n!*polcoeff(sum(k=0, n+1, (k+1)^(k-1)*x^k/k!)*prod(k=1, n-1, 1-a(k)*x^k/k! +x*O(x^n)), n))}
CROSSREFS
Cf. A159310.
Sequence in context: A112243 A083836 A326885 * A318580 A054910 A028562
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(19)-a(20) from Amiram Eldar, Aug 18 2023
STATUS
approved