login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318580 Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k)^k). 0
1, 1, 7, 55, 601, 7561, 116191, 1999327, 39267985, 850964401, 20332107991, 527930427751, 14838001344937, 447653776595065, 14440021169407471, 495398956418435791, 18012260306904120481, 691502230924473978337, 27948692251661337581095, 1185878351946613955122711 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: exp(-1 + exp(Sum_{k>=1} sigma_2(k)*x^k/k)).

E.g.f.: A(x) = exp(B(x) - 1), where B(x) = o.g.f. of A000219.

a(0) = 1; a(n) = Sum_{k=1..n} A000219(k)*k!*binomial(n-1,k-1)*a(n-k).

MAPLE

seq(n!*coeff(series(exp(-1+mul(1/(1-x^k)^k, k=1..100)), x=0, 20), x, n), n=0..19); # Paolo P. Lava, Jan 09 2019

MATHEMATICA

nmax = 19; CoefficientList[Series[Exp[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

nmax = 19; CoefficientList[Series[Exp[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]]], {x, 0, nmax}], x] Range[0, nmax]!

p[n_] := p[n] = Sum[DivisorSigma[2, k] p[n - k], {k, n}]/n; p[0] = 1; a[n_] := a[n] = Sum[p[k] k! Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]

CROSSREFS

Cf. A000219, A001157, A058892, A318250.

Sequence in context: A083836 A326885 A159313 * A054910 A028562 A209668

Adjacent sequences:  A318577 A318578 A318579 * A318581 A318582 A318583

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:13 EST 2021. Contains 349437 sequences. (Running on oeis4.)