The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318580 Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k)^k). 0
 1, 1, 7, 55, 601, 7561, 116191, 1999327, 39267985, 850964401, 20332107991, 527930427751, 14838001344937, 447653776595065, 14440021169407471, 495398956418435791, 18012260306904120481, 691502230924473978337, 27948692251661337581095, 1185878351946613955122711 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: exp(-1 + exp(Sum_{k>=1} sigma_2(k)*x^k/k)). E.g.f.: A(x) = exp(B(x) - 1), where B(x) = o.g.f. of A000219. a(0) = 1; a(n) = Sum_{k=1..n} A000219(k)*k!*binomial(n-1,k-1)*a(n-k). MAPLE seq(n!*coeff(series(exp(-1+mul(1/(1-x^k)^k, k=1..100)), x=0, 20), x, n), n=0..19); # Paolo P. Lava, Jan 09 2019 MATHEMATICA nmax = 19; CoefficientList[Series[Exp[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! nmax = 19; CoefficientList[Series[Exp[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]]], {x, 0, nmax}], x] Range[0, nmax]! p[n_] := p[n] = Sum[DivisorSigma[2, k] p[n - k], {k, n}]/n; p[0] = 1; a[n_] := a[n] = Sum[p[k] k! Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 19}] CROSSREFS Cf. A000219, A001157, A058892, A318250. Sequence in context: A083836 A326885 A159313 * A054910 A028562 A209668 Adjacent sequences:  A318577 A318578 A318579 * A318581 A318582 A318583 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 10:13 EST 2021. Contains 349437 sequences. (Running on oeis4.)